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Abstract. The Möbius energy, defined 1991 by O’Hara, is the most promi-
nent example of a knot energy. In this text we will focus on the regularity of
local minimizers (within a prescribed knot class) whose arc-length parametriza-
tion was shown to be C1,1 by Freedman, He, and Wang. Later on, He im-
proved this result to C∞ regularity. In this text we will briefly outline the
main ideas of these two steps which require completely different approaches
involving techniques from geometry and analysis. Moreover we explain how to
rigorously derive the first variation of the Möbius energy and fix a gap in He’s
treatise.

1. Introduction. Imagine the motion of a knotted charged fiber within a viscous
liquid. Will it reach a stationary point minimizing its electrostatic energy? If so,
will the resulting shape help to determine its knot type?

These questions led to the definition of a first example of a knot energy by
Fukuhara [4] in 1988. His idea was to find a “nicer shape” for a given knot in
the same knot class, i. e. a representative that is as little entangled as possible with
preferably large distances between different strands.

While Fukuhara treated only piecewise linear curves, i. e. polygons, we can also
claim smoothness as a second criterion for “nicely shaped” curves.

Knots and knot energies. In the following, a knot will denote an embedded
closed curve in C0(R/ℓZ, R3). Two knots are said to belong to the same knot class
if one can continuously be deformed into the other without self-intersections or
pulling-tight of small knotted arcs, see Figure 1.

Figure 1. Pulling-tight of a small knotted arc

The fundamental paradigm when defining knot energies is to model self-avoidance,
i. e. a knot energy has to blow up on sequences of embedded curves converging to a
curve with a self-intersection. By this one hopes to avoid entangledness (and maybe
non-smoothness) and, even more important, not to run into the danger of leaving
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the knot class during the minimizing process. But as we will see, self-avoidance
alone does not prevent any of these three problems.

The definition of knot energies is also an attempt to give a new approach to the
main problem of knot theory, to decide whether two knots belong to the same knot
class. Furthermore, one hopes for future applications in physics and biochemistry.

Defining a knot energy. The first energy on smooth curves goes back to O’Hara

[8]. His idea was to penalize pairs of points (γ(s), γ(t)) on a curve γ : R/(ℓZ) → R3

having a small Euclidean distance |γ(s) − γ(t)|. This effect has to be regularized
with respect to neighboring points which by their nature have a small Euclidean
distance. To this end, he introduced the intrinsic distance Dγ(s, t), see Figure 2.

γ(s) γ(t)

Figure 2. Euclidean (straight line) vs. intrinsic distance (lower arc)

In order to produce a sufficient singularity we have to square the respective
terms obtaining 1

|γ(s)−γ(t)|2 − 1
Dγ(s,t)2 . Passing to the average by integration gives

O’Hara’s definition

E(γ) :=

∫∫

(R/(ℓZ))2

(
1

|γ(s) − γ(t)|2
− 1

Dγ(s, t)2

)

|γ̇(s)| |γ̇(t)| ds dt,

where the factors |γ̇(s)| |γ̇(t)| guarantee invariance under reparametrization when
restricting to the class C of absolutely continuous (i. e. γ ∈ H1,1) injective curves
with γ̇ ̸= 0 a. e. By this property we can always assume arc-length parametrization
|γ̇| ≡ 1 which leads to γ ∈ C0,1.

Since in the definition of E we only deal with (non-negative) distances, E is
invariant under translations and orthogonal transformations. Moreover it does not
depend on the orientation of the curve and is invariant under rescaling due to the
factors |γ̇(s)| |γ̇(t)|. Thus we may assume ℓ = 2π without loss of generality.

Any finite-energy curve is bi-Lipschitz continuous with a bi-Lipschitz constant
only depending on its energy, see O’Hara [8, Thm. 1.8]. This immediately proves
self-avoidance.

Furthermore, E is continuous on injective γ ∈ H2,2(R/2πZ, R3) with |γ̇| ≥ c > 0,
see [6, 10].

Möbius invariance and its consequences. The fundamental result of Freed-

man, He, and Wang [3] was the discovery of a somewhat “hidden” invariance —
E is invariant under inversions on spheres, up to an additive constant if the curve
passes through the center of the sphere. Altogether, E is invariant under Möbius
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transformations in R3, the group generated by inversions on planes and spheres. By
virtue of this fact they coined the name Möbius energy.

While the Möbius invariance plays a fundamental role in almost all arguments
in [3] there is one important drawback regarding the concept of knot energies: It
is fairly simple to construct a sequence of curves featuring a pulling-tight as shown
in Figure 1 while their energy is constant. Despite of its self-avoidance, minimizing
the Möbius energy always provides the danger of leaving the knot class, not by
self-intersection but by pulling-tight.

In this context, we would like to ask to what extent E does meet the intention of
a knot energy. Of course, the Möbius energy is some measure for “entangledness”
since any finite-energy curve is bi-Lipschitz continuous with a Lipschitz constant
monotonously depending on its energy. On the other hand, applying a suitable
Möbius transformation maps a given curve to a new curve of the same energy
where its actual “knotting” is contained in a ball of arbitrary small radius. This
does not fit in the general idea of a “nicely shaped” knot, so the Möbius energy is
not a perfect measure in this sense.

Regularity properties of finite-energy curves can be analyzed locally, so that we
can assume an arbitrarily small amount of energy by restricting to sufficiently small
subarcs. By the fact that the bi-Lipschitz constant tends to 1 as E → 0, this
excludes “corners” and more so “cusps”, but does not imply differentiability. Even
worse, by modifying a curve in a small neighborhood of a given point x we obtain
a new curve that is not differentiable at x with energy arbitrarily close to that of
the original curve, cf. [2]. In this respect, the Möbius energy is a “bad” measure for
smoothness.

On the other hand, we obtain almost the best possible regularity when restricting
to local minimizers of E (which exist at least in prime knot classes), see Theorem 5.

In spite of these drawbacks, E remains an interesting functional due to its geo-
metric properties. Examples of knot energies which penalize entangledness and
pulling tight while providing C1,β regularity are given by the family of E(α) ener-
gies, see (1) below, and the Thickness, see Gonzalez et. al. [5].

Minimizers of E. Since line segments are unique minimizers among all (open)
curves and a line is mapped to a circle by inversion on a (suitable) sphere, Freed-

man, He, and Wang obtained as a first consequence of the Möbius invariance the
minimizing property of circles among all closed curves [3, Cor. 2.2].

Since they were able to prevent only one knotted arc of a minimal sequence from
pulling tight, they could prove existence of E-minimizers only within prime knot
classes [3, Thm. 4.3]. A knot is said to be a prime knot if it cannot be decomposed
into two non-trivial knots. It is an open question whether the minimizers are unique
up to Möbius transformations, see Kusner and Sullivan [7].

By the fact that circles are global minimizers, one may hope for some regularity
of local minimizers. Here, we are no longer restricted to prime knots.

Theorem 1 ([3, Thm. 5.4]). A local minimizer γ ∈ C0,1(R/2πZ, R3) within a pre-
scribed knot class, E(γ) < ∞, parametrized by arc-length, has a Lipschitz continuous
tangent, i. e. γ ∈ C1,1.

We will discuss this result in Section 2.
Moreover, Freedman, He, and Wang stated a formula for the first variation

of E, cf. [3, Lem. 6.1]. While they only formally differentiate the integrand of
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E(γ + τh) with respect to τ = 0, interchanging differentiation, integration and the
limit process requires rather involved arguments which we sketch in Theorem 6.

Later on, Z.-X. He [6] once more investigated the gradient of the Möbius energy.
His topics are short-time existence of the gradient flow1 associated to E and C∞-
regularity of critical points by considering the Euler-Lagrange equation of E and
applying a bootstrap argument involving pseudodifferential calculus.

Theorem 2 ([6, Cor. 5.3]). Any local minimizer γ ∈ C0,1(R/2πZ, R3) within a
prescribed knot class, E(γ) < ∞, parametrized by arc-length, is C∞ smooth.

Unfortunately, his arguments contain some major gaps. In Section 3 we sketch
how to set up a rigorous proof involving the study of bilinear Fourier multipliers
defined on fractional Sobolev spaces.

Our techniques from Section 3 also apply to the energy family

E(α)(γ) =

∫∫

(R/(2πZ))2

(
1

|γ(s) − γ(t)|α
− 1

Dγ(s, t)α

)
|γ̇(s)| |γ̇(t)| ds dt, (1)

where α ∈ [2, 3), see [10].

2. Local minimizers. In this section we will briefly sketch the proof of Theorem 1.
We start with a precise definition of local minimizers. A curve γ ∈ C is said

to be a local minimizer if there is an open neighborhood U of image γ such that
E(γ) ≤ E(γ̄) for any γ̄ ∈ C whose image is contained in U and which belongs to
the same knot class as γ.

The most crucial argument is the following reflection principle. Let H be some
open half-space in R3, i. e. ∂H is a plane. Suppose that the image of γ ∈ C ,
E(γ) < ∞, does not contain any point of H , but there are at least two disjoint
points belonging to imageγ ∩ ∂H . They split up the curve into two subarcs γ1, γ2

where γ1 is meant to be the shorter one. Briefly, “γ = γ1 ∪ γ2”.
Now we denote the reflection of γ1 on ∂H by γ̃1 and define a new curve γH in

the obvious way by “γH := γ̃1 ∪ γ2”. Without loss of generality, we may assume
arc-length parametrization for γ which also leads to an arc-length parametrized γH .
Now, by |γ(s) − γ(t)| ≤ |γH(s) − γH(t)| for all s, t ∈ R/2πZ and Dγ ≡ DγH , we
arrive at E(γ) ≥ E(γH). Moreover, E(γ) = E(γH) holds if and only if the image
of γ1 or γ2 is entirely contained in ∂H . To this end, we derive from E(γ) = E(γH)
and Dγ ≡ DγH the identity

∫∫

(R/2πZ)2

(
1

|γ(s) − γ(t)|2
− 1

|γH(s) − γH(t)|2

)

ds dt = 0.

Since the integrand is non-negative it vanishes almost everywhere on (R/2πZ)2. By
continuity we arrive at |γ(s) − γ(t)| = |γH(s) − γH(t)| for all s, t ∈ R/2πZ. As-
suming γ(t) = γ2(t) /∈ H , this yields |γ1(s) − γ2(t)| = |γ̃1(s) − γ2(t)| while γ1(s) ∈
R3\H and γ̃1(s) ∈ H . An elementary geometric argument gives γ1(s) = γ̃1(s) ∈ ∂H
as proposed. Of course, the converse is just a consequence of invariance under Eu-
clidean transformations.

Since a half-space is mapped to a ball by a suitable Möbius transformation, we
obtain the following statement by the Möbius invariance of E.

1Very recently, a long-time existence result for the gradient flow of the Möbius energy has been
established by Blatt [1].
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γ2

B

γ1

γ̃1

Figure 3.

Proposition 3 (Reflection principle). Let B an (open) ball and γ ∈ C , E(γ) <
∞, with image γ ∩ B = ∅ and image γ ∩ ∂B containing at least two points. By
decomposing “γ = γ1 ∪ γ2” as indicated in Figure 3 and defining “γB = γ̃1 ∪ γ2”
where γ̃1 denotes the reflection of γ1 on ∂B, we obtain E(γ) ≥ E(γB) with equality
if and only if the image of γ1 or γ2 is entirely contained in ∂B.

This statement is the basic tool for the proof of

Lemma 4. Let γ ∈ C , E(γ) < ∞, be a local minimizer. Then there is a δ = δ(γ) >
0, such that for any ball B of radius ≤ δ with image γ ∩ B = ∅ the “contact set”
image γ ∩ ∂B is connected (or empty).

≤ δ

≤ δ

≤ δ

≤ δ

Figure 4. All balls of radius ≤ δ that touch the dark line curve
above produce a connected contact set which is not true for the
dashed line curve.

Sketch of proof. By the definition of local minimizers there is some δ = δ(γ) > 0
such that ∥γ − h∥C0 ≤ 2δ implies imageh ∈ U for any h ∈ H1,1(R/2πZ, R3).
Assume x, y ∈ image γ ∩ ∂B, x ̸= y. We will show that there is an arc of γ that
lies on ∂B and joins x and y. Since we are in the situation of Figure 3 we may
construct the curve γB satisfying E(γ) ≥ E(γB). By construction, image γB ⊂ U .
It is convincing that γB belongs to the same knot class as γ. (A rigorous proof of
this fact is involving although using elementary arguments and requires to lessen δ,
cf. [3, Sect. 5].) By the local minimizing property, we obtain E(γ) ≥ E(γB) ≥ E(γ).
Now Proposition 3 yields the desired arc on ∂B.



6 PHILIPP REITER

δ

γ

Figure 5. Cross section of the “horn torus” at some point of the curve γ

A consequence of Lemma 4 is the existence of a “horn torus” of radius δ around
each point of imageγ.

This implies the existence of a unique tangent at each point and furthermore
provides a Lipschitz bound upon the tangents. This proves Theorem 1.

3. Critical points. A curve γ is said to be a critical point of E if its first variation
δE(γ, h) := limτ→0

E(γ+τh)−E(γ)
τ vanishes for any h ∈ C∞(R/2πZ, R3).

Theorem 5 ([6, Thm. 5.1]). Any E-critical point γ ∈ H2,3 being injective and
parametrized by arc-length is C∞ smooth.

The task of this section is to prove the preceding statement as it immediately
gives the

Proof of Theorem 2. By Theorem 1, any local minimizer γ : R/2πZ → R3 belongs
to C1,1 when parametrized by arc-length. Moreover, there is some ε = ε(γ) > 0

such that all h ∈ C∞(R/2πZ, R3) satisfying
∥∥∥γ̇ − ḣ

∥∥∥
C0

≤ ε belong to the same

knot class as γ, see [9] and recall the invariance of translation. Now E(γ + τh) −
E(γ) ≥ 0 for all |τ | ≤ ε

∥∥∥ḣ
∥∥∥
−1

C0
. This implies E(γ+τh)−E(γ)

τ ≥ 0 for τ > 0 and
E(γ+τh)−E(γ)

τ ≤ 0 for τ < 0. Passing to the limit τ → 0 yields δE(γ, h) = 0, i. e.
γ is E-critical. Since C1,1(R/2πZ, R3) = H2,∞(R/2πZ, R3) ⊂ H2,3(R/2πZ, R3) we
may apply Theorem 5.

When trying to compute the first variation of E one faces the problem if it is
justified to interchange differentiation and the double integral.

δE(γ, h) = d
dτ

∣∣
τ=0

E(γ + τh)

=
d

dτ

∣∣∣∣∣
τ=0

∫∫

(R/(2πZ))2

(
1

|(γ+τh)(s)−(γ+τh)(t)|2 − 1
Dγ+τh(s,t)2

)
|(γ̇+τ ḣ)(s)| |(γ̇+τ ḣ)(t)| ds dt

?
=

∫∫

(R/(2πZ))2

d

dτ

∣∣∣∣∣
τ=0

[(
1

|(γ+τh)(s)−(γ+τh)(t)|2 − 1
Dγ+τh(s,t)2

)
|(γ̇+τ ḣ)(s)| |(γ̇+τ ḣ)(t)|

]
ds dt

A formula for the latter term is straightforward and already appeared in [3,
Lem. 6.1]. Freedman, He, and Wang showed that this term does in fact exist
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under certain assumptions while the integral has to be understood as a principle
value, i. e.

lim
ε↘0

∫∫

|s−t|≥ε

d

dτ

∣∣∣∣∣
τ=0

[(
1

|(γ+τh)(s)−(γ+τh)(t)|2 − 1
Dγ+τh(s,t)2

)
|(γ̇+τ ḣ)(s)| |(γ̇+τ ḣ)(t)|

]
ds dt.

(2)
Neither [3] nor [6] contain a proof for the admissibility of commutating differen-

tiation, integration, and the limit process, so we will briefly sketch the argument.

Theorem 6. Let γ, h ∈ H2,2(R/2πZ, R3), γ injective and |γ̇| ≥ c > 0. Then the
first variation of E at γ in direction h exists and is given by (2).

Proof. It is convenient to start with an approximate functional, namely

Eε(γ) :=

∫∫

|s−t|≥ε

(
1

|γ(t + w) − γ(t)|2
− 1

Dγ(t, t + w)2

)

|γ̇(t + w)| |γ̇(t)|
︸ ︷︷ ︸

=: f(γ; t, w)

dw dt,

which can be differentiated just via Lebesgue’s theorem. Its first variation

Iε(γ, h) :=

∫∫

|s−t|≥ε

d
dτ

∣∣
τ=0

f(γ + τh; t, w)
︸ ︷︷ ︸

=: g(γ, h; t, w)

dw dt

turns out to be a continuous mapping

τ .→ Iε(γ + τh, h)

for |τ | ≪ 1 and ε > 0. The technical part is now to show that

τ .→ lim
ε↘0

Iε(γ + τh, h)

is in fact also continuous for |τ | ≪ 1. It essentially relies on Taylor expansions
which demand γ, h ∈ C3 (or at least C2,1). Now we use Fubini’s theorem to obtain

Eε(γ + τh) − Eε(γ)

τ
=

∫∫

|s−t|≥ε

f(γ + τh; t, w) − f(γ; t, w)

τ
dw dt

=

∫∫

|s−t|≥ε

∫ 1

0
g(γ + ϑτh, h; t, w) dϑ dw dt =

∫ 1

0

∫∫

|s−t|≥ε

g(γ + ϑτh, h; t, w) dw dt dϑ

=

∫ 1

0
Iε(γ + ϑτh, h) dϑ.

Applying Lebesgue’s theorem we may first pass to the limit ε ↘ 0 and then send
τ → 0 which reveals the existence of the first variation δE(α)(γ, h) = I(γ, h) :=
limε↘0 Iε(γ, h).

Since I continuously extends to γ, h ∈ H2 if γ is parametrized by arc-length,
cf. [6, Lem. 4.2], and E is continuous on H2 curves, we may transfer this result to
arbitrary regular H2 curves via some reparametrization argument that essentially
relies on Lusin’s theorem. The details are to be found in [10, Chap. 1].
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Computing the first variation of the Möbius energy according to Theorem 5 we
arrive at

δE(γ, h) = 2 lim
ε↘0

∫∫

|s−t|≥ε

(〈
γ̇(t)

|γ̇(t)|2 , ḣ(t)
〉
− ⟨γ(s)−γ(t),h(s)−h(t)⟩

|γ(s)−γ(t)|2

)
|γ̇(s)||γ̇(t)|
|γ(s)−γ(t)|2 ds dt.

Interestingly, it does neither involve Dγ nor its derivative which is compatible
with [3, Lem. 6.1].

It is convenient to introduce a “linearization” Q derived from δE by assuming
arc-length parametrization (|γ̇| ≡ 1) which also implies |γ(s) − γ(t)|2 = (s − t)2 +
O(|s − t|4). Let

Q(γ, h) := lim
ε↘0

∫∫

|s−t|≥ε

(〈
γ̇(t), ḣ(t)

〉
− ⟨γ(s) − γ(t), h(s) − h(t)⟩

(s − t)2

)
ds dt

(s − t)2
.

In order to examine the structure of this bilinear operator, we test it with L2 basis
functions φk(t) := eikt, k ∈ Z, obtaining Q(φk, φk) = O(|k|3) and Q(φk, φℓ) = 0 for
k ̸= ℓ.

By the fact that Q(φk, φk) does not behave like k3 but like |k|3 the functional Q
cannot be represented by an ordinary differential operator of third order. Instead
we have to introduce fractional powers of the Laplacian. For f : R/2πZ → R we
define

Jsf :=
∑

k∈Z

(1 + k2)s/2f̂kφk

where f̂k := −
∫ 2π
0 f(t)φ−k(t) dt is the k-th Fourier coefficient of f . Note that

J2f = f − f̈ . Now, using the L2 inner product ⟨f, g⟩L2 := −
∫ 2π
0 ⟨f(t), g(t)⟩

R3 dt =
∑

k∈Z
f̂kĝk,

Q(γ, h) = c
〈
J2γ, Jh

〉
L2 + lower order terms. (3)

The next step is isolating the highest-order derivative of δE. Still assuming
arc-length parametrization (|γ̇| ≡ 1) we arrive at

δE(γ, h) = 2Q(γ, h) + l. o. t.
(3)
= c

〈
J2γ, Jh

〉
L2 + l. o. t. (4)

which confirms the approximating property of Q. In order to write the lower order
terms as ⟨· · · , Jh⟩L2 , we have to impose h ⊥ γ̇, so let h := Pγ̇⊥g := g − ⟨g, γ̇⟩ γ̇
be the projection of some arbitrary g ∈ C∞ onto the orthogonal complement of γ̇.
Furthermore, we need γ̈ ∈ L3. Now
〈
J2γ, Jh

〉
L2 =

〈
γ − γ̈, J

(
Pγ̇⊥g

)〉
L2 = −

〈
γ̈, J

(
Pγ̇⊥g

)〉
L2 + l. o. t.

= − ⟨γ̈, Jg⟩L2 + ⟨γ̈, J (⟨g, γ̇⟩ γ̇)⟩L2 + l. o. t.
(5)

In order to show that ⟨γ̈, J (⟨g, γ̇⟩ γ̇)⟩L2 is a lower order term, we introduce the
matrix-valued function f := γ̇γ̇⊤ which gives ⟨g, γ̇⟩ γ̇ = fg. By arc-length parame-
trization we obtain γ̈ ⊥ γ̇ such that f γ̈ = 0 and

⟨γ̈, J (⟨g, γ̇⟩ γ̇)⟩L2 = ⟨γ̈, J(fg)⟩L2 = ⟨fJ γ̈, g⟩L2 = −⟨J(f γ̈) − fJ γ̈, g⟩L2 . (6)

The bilinear Fourier multiplier

M : (f, γ̈) .→ J(f γ̈) − fJ γ̈ =
∑

k,ℓ∈Z

√
1+(k+ℓ)2−

√
1+ℓ2

√
1+k2

︸ ︷︷ ︸
uniformly bounded

Ĵfk
ˆ̈γℓφk+ℓ (7)
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produces a distribution, more precisely,

J− 1
2
−εM(f, γ̈) ∈ L2 for ε > 0. (8)

If γ is critical, the right-hand side of (4) vanishes. By (5) – (8), a critical point γ
satisfies 〈

J
1
2
−εγ̈, J

1
2
+εg
〉

L2
=
〈
−J− 1

2
−εM(f, γ̈) + l. o. t., J

1
2
+εg
〉

L2

for all g ∈ C∞(R/2πZ, R3), so

J
1
2
−εγ̈ = −J− 1

2
−εM(f, γ̈) + l. o. t. (9)

The right-hand side of (9) contains at most second order derivatives of γ and more-
over belongs to L2, so γ ∈ H2+ 1

2
−ε, where Hs := J−sL2 is the Sobolev space of

fractional order s ∈ R.
This permits to establish a bootstrapping argument of the following scheme.

If γ ∈ Hs, s ≥ 2, the right-hand side of (9) belongs to Hs−2, which gives γ̈ ∈
Hs−2+ 1

2
−ε and γ ∈ Hs+ 1

2
−ε. This concludes the proof of Theorem 5.
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